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A B S T R A C T

We conducted a randomized sham-controlled clinical trial from 2019 to 2024 to characterize the safety and 
efficacy of applying paired-associative stimulation (PAS), consisting of high-intensity transcranial magnetic 
stimulation and high-frequency peripheral nerve stimulation, at early stages after incomplete spinal cord injury 
(SCI) to enhance motor recovery. Patients with incomplete cervical SCI were randomized 1:1 within 1–4 months 
post-injury to receive 12 weeks of PAS or sham stimulation alongside conventional rehabilitation, which was not 
changed. Patients were followed up to 1.5 years after injury (about 1 year after end of stimulation). Seventeen 
patients (14 males, age 53 ± 16 years) participated. Manual Muscle Test revealed a significant effect of treatment 
in favor of active group (F (1, 470) = 14.69; p < 0.001) in muscles that had no antigravity activity before 
beginning of stimulation. Improvement from baseline was observed at the end of stimulation (active: 346 ± 53 
%, sham: 215 ± 26 %), 1 year after injury (about 6 months after end of treatment; active: 389 ± 61 %, sham: 241
± 39 %), and at 1.5 years after injury (about 12 months after end of treatment; active: 419 ± 73 %, sham: 210 ± 

17 %). Greater improvement in fine motor skill tests was observed in the active group. Although the Spinal Cord 
Independence Measure showed no differences between groups (p = 0.36–0.83), there was improvement in ac-
tivity of daily living tests. The intervention was feasible and well-tolerated in both groups. PAS is a safe and 
feasible therapy that can be added to conventional rehabilitation even in early stages after SCI.

Introduction

Spinal cord injury (SCI) severely affects quality of life and imposes a 
significant economic burden [1]. Worldwide, over 2.5 million people are 
affected by SCI [2]; a large proportion of SCIs are incomplete, with 
preserved connectivity [3–5]. Few therapeutic approaches have pro-
gressed to clinical practice, and safe, noninvasive, feasible, and timely 
treatments are needed [6–8]. Strengthening residual pathways after 
incomplete SCI through non-invasive neuromodulation has gained 
considerable attention [9,10]. Long-term potentiation (LTP) [11]-like 
effects, depending on the cooperativity and associativity of neuronal 
activation, can counteract the connectivity weakness after neuronal 
trauma and disease. Evidence from animal studies indicates that stim-
ulation inducing spike-time-dependent (STDP)-like plasticity between

upper and lower motor neurons is a promising tool for strengthening the 
residual connectivity and promoting recovery [12,13].

Transient plastic changes in the human corticospinal tract can be 
induced through paired-associative stimulation (PAS) [14–17]. 
PAS-induced changes in neuronal connectivity represent a form of STDP 
[14]. In cortical PAS, transcranial magnetic stimulation (TMS) [18] over 
the human primary motor or sensory cortex is paired with peripheral 
electrical nerve stimulation (PNS) of somatosensory afferents to alter 
neuronal excitability at the cortical level [14,19]. Spinal PAS targets the 
human spinal cord. In spinal PAS, orthodromic volleys induced by TMS 
in upper motor neurons and antidromic volleys induced by PNS in lower 
motor neurons are intended to arrive in a synchronous manner to the 
corticomotoneuronal synapses of the corticospinal tract [20–23]. 
Increasing evidence shows that the therapeutic potential of various PAS
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protocols for incomplete SCI patients is promising and should be further 
explored [24–28]. More randomized controlled trials are needed to 
clarify the effect of PAS in patients with SCI [27].

We previously developed a new version of PAS designed as a therapy 
for incomplete SCI (high-PAS) that utilizes high-intensity TMS and high-
frequency PNS. PAS protocols that utilize single-pulse PNS and single-
pulse TMS that is slightly above motor threshold utilize the STDP 
model in which synaptic input to dendrites is active just before a somatic 
input. However, this model is now considered as simplified [17]. Plas-
ticity induction does not depend only on spike timing but also on firing 
rate, postsynaptic voltage, and synaptic cooperativity [29]. For 
example, in experiments using brain tissue slices, connections exhibited 
classical STDP only when presynaptic and postsynaptic spikes occurred 
at moderate firing rates (10–20 Hz); higher firing rates (>30 Hz) 
induced LTP independent of spike timing [29]. We utilized 
high-frequency PNS and high-intensity TMS to create multiple in-
teractions at the spinal-cord level and to make the PAS protocol clini-
cally more feasible and the results more stable [30]. TMS delivered at 
high intensity creates multiple orthodromic volleys [31,32], and 
high-frequency PNS creates multiple antidromic volleys. Both activa-
tions collide at the spinal-cord level [33]. When both LTP and long-term 

depression (LTD)- producing interactions occur at the same time, LTP 
wins over LTD [34]. This could explain why the high-PAS protocol 
produces stable and efficient motor-evoked potential (MEP) amplitude 
increase in healthy subjects [30,35–39] and stable and long-lasting 
improvement in motor performance in patients with incomplete SCI 
[30,40–46]. Due to multiple interactions, the exact site of action is more 
challenging to define than that for PAS protocols that use single TMS and 
PNS pulses [30]. However, similar to single-pulse PAS, high-PAS also 
can specifically target the spinal level, with its outcome depending on 
the interstimulus interval (ISI) between TMS and PNS [33,47]. 

Neuromodulation studies requiring long-term administration at 
subacute stages after neurological insults are challenged by spontaneous 
recovery and by the overall burden of the acute medical condition. 
However, it is crucial to investigate whether neuromodulation could 
safely and non-invasively benefit patients early after injury, since this is 
the period of greatest plasticity [4] and long-term changes in muscles 
have not yet occurred [48]. We conducted a double-blind randomized 
clinical trial to investigate the effect of high-PAS during the early phase 
after SCI. Treatment was started 1–4 months post injury during inpatient

rehabilitation and continued for 12 weeks, including time after 
discharge home and outpatient rehabilitation. We show that high-PAS 
modulates motor recovery and particularly promotes restoration of 
fine movements.

Methods

The study was registered at clinicaltrials.gov (NCT04101916). The 
study was approved by the Ethics Committee of Medicine of the Helsinki 
University Hospital. All patients provided written informed consent.

Patient selection and randomization

This trial was double-blind randomized and sham-controlled with a 
1:1 allocation ratio. Patients were recruited at the Helsinki University 
Hospital SCI inpatient ward. Seventeen patients (14 males, mean [±SD] 
age 53 [±16]) participated (Fig. 1). See Supplementary Methods for 
details on recruitment, randomization, and blinding.

Timetable and conventional rehabilitation

The time of stimulations was not linked to physical or occupational 
therapies. The stimulation schedule minimally affected conventional 
rehabilitation and patient preferences were considered. Participation 
did not change the rehabilitation or medications of the patients, and the 
patient's medical team was not aware of their group allocation.

Stimulations were given 5 times per week during the first 2 weeks 
and 3 times per week for 10 subsequent weeks. Most stimulations 
adhered to this schedule, but some small occasional exceptions were 
allowed if needed (e.g., to accommodate urgent medical situations). 
Missed sessions were conducted later.

Stimulation protocol

See Supplementary Methods and Fig. 2 for a full description of pre-
stimulation measurements and stimulation settings. Active stimulation 
has also been described in detail and discussed previously [30]. Sham 

stimulation settings were designed to resemble active stimulation as 
closely as possible.

Fig. 1. CONSORT flow diagram of the trial.
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Pre-stimulation measurements

Briefly, for active stimulation we measured minimum latencies of F-
responses to 0.2-ms pulses at supramaximal intensity from median, 
ulnar, and radial nerves (Fig. 2) [47]. We also recorded minimum PNS 
intensity required to produce persistent F-responses to 1-ms pulses for 
the same nerves to be used later as PNS stimulation intensity. This en-
sures the use of the lowest possible intensity at which motoneurons of 
the spinal cord are reached [37,47,49]. Recording electrodes were 
placed on the abductor pollicis brevis (APB), abductor digiti minimi 
(ADM), and extensor digitorum (ED) for median, ulnar, and radial 
nerves, respectively. The same recording electrode placement was used 
for cortical mapping with TMS as we defined hotspots for APB, ADM, 
and ED [30]. Fifteen MEPs from each hotspot were sampled and their 
average latency calculated for ISI. ISI was calculated with the formula F 
latency – MEP latency] [47]. ISIs varied from − 6.8 to +8.7 (see Sup-
plementary data for patient-specific settings).

For sham treatment, stimulation electrodes were not above the motor 
nerves (Fig. 2) and stimulation settings were trains or three 40-μs pulses 
at 3 Hz. We individually determined minimum intensity to elicit a slight 
skin sensation that led to individual intensities of 4–15 mA. TMS map-
ping was performed with a 7.5-cm plastic isolator between the coil and 
head surface. The researcher performing the recordings recreated the 
active stimulation setup as much as possible. Recording electrodes for 
TMS responses and PNS were in the same places as in active stimulation.

Stimulation protocol

Active: TMS and PNS were triggered at a pre-defined ISI. TMS was 
delivered over each hotspot at 100 % of stimulator output (SO) paired 
with PNS of the corresponding nerve (APB with median, ADM with 
ulnar, and ED with radial). The radial nerve was gently pressed against 
the skin and the movement elicited by it was monitored to ensure correct 
activation of the nerve. PNS was delivered (Fig. 2) in trains of six 1-ms 
pulses at 100 Hz [36,39] at intensity determined in pre-measurements 
[30]. PAS was given every 5 s for 20 min (240 pairings) for each 
nerve [36]. If needed, EMLA lidocaine-prilocaine ointment was applied

to minimize discomfort from PNS, and PNS intensity was gradually 
increased to the required level by asking for patient consent for each 
increase (see Refs. [30,50] for details). TMS was generally tolerable and 
delivered at 100 % SO from the beginning. During stimulation, patients 
were instructed to very slightly preactivate the muscles innervated by 
stimulated nerve just before each TMS click (see Supplementary data). If 
this was not possible or became difficult due to fatigue, the patient was 
instructed to imagine the corresponding movement [30]. Patients were 
not allowed to engage in any other activity, such as long discussions or 
listening to music during stimulation [30,35,51].

Sham: Equipment, environment, staff, amount, stimulation dura-
tion, and use of motor preactivation or imagery was the same as in the 
active condition. TMS was delivered at 100 % SO with the use of 7.5-cm 

plastic isolator. PNS was given through electrodes at sham positions 
(Fig. 2) with trains of three 40-μs pulses at 3 Hz at an intensity of just 
about sensory threshold [52]. Stimulation was triggered every 5 s as in 
active stimulation.

Outcome measures

Patients were assessed by two physiotherapists with extensive 
experience in SCI who carefully synchronized their evaluation methods. 
If possible, each patient had the same physiotherapist at every follow up 
(12/17 patients).

Primary endpoints: Daniels and Worthingham's Manual Muscle Test 
(MMT) score on a 0–5 scale was sampled from each muscle (see Sup-
plementary Table 1 for test explanation and muscle list) of each hand of 
each patient before (PRE) and after (POST) treatment, and at 1 year (1Y) 
and 1.5 years (1.5Y) after injury, corresponding to about 6 months and 
12 months after end of treatment, respectively. To avoid the ceiling ef-
fect of the test and lack of sensitivity between antigravity (3–5) muscle 
strength grades [53], muscles with no antigravity activity (0–2) at PRE 
timepoint, having potential to at least double the score and not requiring 
evaluation of external resistance, were analyzed separately from mus-
cles having antigravity (3–5) activity at PRE. Spinal Cord Independence 
Measure (SCIM) was collected from each patient at the same timepoints. 
Alpha level was adjusted to 0.025 to compensate for two primary

Fig. 2. Paired-associative stimulation setup. A, Active setup pre-measurements. Interstimulus interval between TMS and PNS is calculated with the formula [F 
latency minus MEP latency]. B, Active PNS pattern. C, Position of active and sham PNS electrodes.
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endpoints for SCIM, and further to 0.0125 for MMT to compensate for 
separate analysis of muscles.

Additional, non-pre-registered outcomes (exploratory supporting evi-
dence): standard 9-hole peg test (9HPT), Box and Blocks test (BBT), key 
pinch (KP) and grip strength (GS) tests, activity of daily living (ADL) test 
custom designed by an experienced SCI physiotherapist (SS, Supple-
mentary Table 2), sensory function (mean average of light touch [LT] 
and pin prick [PP] scores of International Standards for Neurological 
Classification of SCI [ISNCSCI] Worksheet), and standard upper and 
lower extremity spasticity evaluation (Modified Ashworth Scale [MAS]) 
were sampled from each hand of each patient at the same times as above. 
One additional test at 6 months after injury (6 M) was performed. In 
addition, patients answered the question 17 of WHOQOL-BREF ques-
tionnaire “How satisfied are you with your ability to perform your daily 
living activities? (over last two weeks)” on a scale of 1–5 (5-very satis-
fied, 1-very dissatisfied) at the time of MMT and SCIM tests.

Statistical analysis

Analysis was carried out by original assigned groups. Data are pre-
sented as mean ± standard error (SE). For SCIM and “performance in 
daily life” question, we used Kruskal-Wallis test on IBM SPSS Statistics 
30.0. For all other tests, to account for bilateral data, we used linear 
mixed model on IBM SPSS Statistics 30.0 with treatment and time as 
fixed effects and a random intercept dependent on the individual 
included in the model. For MMT, our sample size was sufficiently large 
to include hand dominance as an additional fixed effect. The model was 
estimated using the Restricted Maximum Likelihood (REML) method. 

All data are presented and analyzed as percent change from each 
corresponding PRE value ((timepoint value – PRE value)/PRE val-
ue*100). PRE value is the value of the same hand measured within 1 
week before beginning treatment. In patients having PRE value zero in

one hand (3 patients in 9HPT [2 active + 1 sham], 2 in BBT [1 + 1], 2 in 
ADL [1 + 1], 2 in KP [1 + 1], 3 in GS [1 + 2], and 3 in MAS [1 + 2]), the 
PRE value for each hand was the mean average PRE value of both hands 
to avoid dividing by zero. One patient had zero values for both hands in 
9HPT and one in MAS; for these, 0 was substituted by 0.25. For MMT, 
the PRE value for each muscle is the mean average PRE score of all 
muscles of the same hand (muscles innervated by stimulated nerves or 
all measured muscles having 0–2 or 3–4 points at baseline for each 
corresponding analysis).

Results

Primary outcome measures

MMT: In muscles innervated by stimulated nerves, we observed a 
significant effect of time (F (1, 470) = 66.66, p < 0.001) and treatment in 
muscles with no antigravity activity (0–2 scores) at PRE (F (1, 470) = 

14.69, p < 0.001). Although both groups improved, the active group had 
greater percent changes in MMT than the sham group at all time points 
(Fig. 3A, POST 346 ± 53 % active vs 215 ± 26 % sham; 1Y 389 ± 61 % 

active vs. 241 ± 39 % sham; 1.5Y 419 ± 73 % active vs 210 ± 17 % 

sham). We observed a significant effect of hand dominance (F (1, 470) = 

10.85, p = 0.001); improvement was stronger in the dominant than non-
dominant hand in both groups at all timepoints (350 ± 29 % dominant 
vs 197 ± 10 % non-dominant). When all muscles were analyzed, sig-
nificant effects of the same direction of time (F (1, 543) = 83.79, p < 
0.001), treatment (F (1, 543) = 7.28, p = 0.007), and hand (F (1, 543) = 

11.61, p < 0.001) were also found; the size effect and significance of 
treatment was slightly weaker than in muscles innervated by the stim-
ulated nerves (Fig. 3A, POST 237 ± 35 % active vs 215 ± 26 % sham; 1Y 
357 ± 51 % active vs 237 ± 36 % sham; 1.5Y 369 ± 59 % active vs 210
± 17 % sham). In muscles with antigravity (3–4) activity at timepoint

Fig. 3. Active group improved more than sham group in MMT, BBT, 9HPT, and ADL tests. 6 M, 1Y, and 1.5Y indicate 6 months, 1 year, and 1.5 years since injury, 
respectively. A, MMT results from muscles with no antigravity activity before stimulation (MMT score 0–2) derived either from muscles innervated only by stim-
ulated median, ulnar, and radial nerves (left) or all measured upper limb muscles (middle) and all measured muscles with antigravity activity (MMT score 3–4) before 
stimulation. See Supplementary Table 1 for the list of muscles. For muscles with no antigravity activity before stimulation, the improvement in active group was 
significantly better than in sham group in muscles innervated by stimulated nerves (F (1, 470) = 14.69, p < 0.001) and in all muscles (F (1, 543) = 7.28, p = 0.007). 
For muscles with 3–4 antigravity activity before stimulation, sham group performed slightly better (F (1, 2206) = 6.8, p = 0.009). B, 9HPT. Active group improved 
more than sham group (F (1,159) = 4,1, p = 0.044). C, BBT. Active group improved more than sham group (F (1, 161) = 10, p = 0.002). D, ADL test. Active group 
improved more than sham group (F (1, 157) = 5.4, p = 0.022). E, Grip strength. Active group improved less than sham group (F (1,161) = 4.7, p = 0.032). F, 
Satisfaction with ability to perform daily life activities. There was greater improvement in the active group at POST (p = 0.032), but not at 1Y (p = 0.27) or 1.5Y 
(p = 0.4).
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PRE, marginal improvement occurred in both groups (Fig. 3A) and a 
small difference favored the sham group (F (1, 2206) = 6.8, p = 0.009) 
(POST 17 ± 1 % active vs 20 ± 1 % sham; 1Y 20 ± 1 % active vs 25 ± 1
% sham; 1.5Y 21 ± 1 % active vs 23 ± 1 % sham). Muscles with score of
5 at PRE were excluded from the analysis as no improvement in these 
muscles could be expected.

SCIM: At the subacute stage, medical staff taught the patients basic 
selfcare skills reflected by SCIM at different timepoints and pace 
depending on their overall medical condition, and thus baseline values 
of SCIM did not reflect pure hand dexterity. No effect of treatment was 
detected (POST p = 0.83, active 24 ± 6 %, sham 38 ± 15 %; 1Y p = 0.36, 
active 26 ± 6 %, sham 55 ± 19 %; 1.5Y p = 0.36, active 27 ± 10 %, sham 

47 ± 18 %).

Additional outcomes (exploratory supporting evidence)

9HPT: Time (F (1, 159) = 6.2, p = 0.014) and treatment (F (1,159) = 

4.1, p = 0.044) affected 9HPT performance. Greater improvement was 
observed in the active than sham group (Fig. 3B).

BBT: There was an effect of treatment (F (1,161) = 10, p = 0.002), 
with greater improvement in the active than sham group, and of time (F 
(1, 161) = 9.1, p = 0.003) (Fig. 3C).

ADL test: Treatment affected ADL (F (1, 157) = 5.4, p = 0.022), which 
increased more in the active than sham group. Time (F (1, 157) = 2.1, p
= 0.1) did not affect ADL (Fig. 3D). See Fig. 3F for patient satisfaction 
with ability to perform daily life activities.

KP: Time increased pinch strength (F (1, 161) = 9.9, p = 0.002), with 
no difference between groups (p = 0.61) (POST active 61 ± 23 %, sham 

72 ± 29 %; 6 M active 61 ± 23 %, sham 77 ± 29 %; 1Y active 88 ± 33 %, 
sham 72 ± 29 %; 1.5Y active 82 ± 41 %, sham 128 ± 33 %).

GS: Time (F (1, 161) = 23.2, p < 0.001) and treatment (F (1,161) = 

4.7, p = 0.032) affected GS. Less improvement was observed in the 
active than sham group (Fig. 3E).

Sensory function: No effect of time (p = 0.73) or treatment (p = 0.27) 
was observed (POST active − 3±5 %, sham 8 ± 4 %; 6 M active 0 ± 6 %, 
sham − 1 ± 4 %; 1Y active − 3 ± 5 %, sham 9 ± 7 %; 1.5Y active 5 ± 6 %, 
sham − 3 ± 3 %).

Spasticity: Multiple changes occurred in spasticity medication in both 
groups during the subacute period; 2/6 patients in the active group and 
2/8 patients in the sham group had less spasticity medication at 1.5Y 
than during the stimulation (Table). No effect of time (p = 0.38) or 
treatment (p = 0.85) was observed (POST active 14 ± 4 %, sham 50 ± 

35 %; 6 M active − 19 ± 4 %, sham 8 ± 27 %; 1Y active 0 ± 4 %, sham 25
± 29 %; 1.5Y active 99 ± 4 %, sham − 19 ± 22 %).

Pain: A reliable assessment of the effect of the intervention on pain 
was not feasible due to numerous changes in overall pain medication 
during the subacute period after SCI and because the complex nature of 
post-SCI pain is not confined to upper limbs. A total of 5/7 patients in the 
active and 5/8 patients in the sham group had less neuropathic pain 
medication at 1.5Y than during the stimulation. For opiate-based 
medication, the corresponding patient numbers were 2/3 (active) and 
3/4 (sham) (Table).

Possible side effects: Five patients in the sham group and 4 patients in 
the active group had occasional overall tiredness or sleepiness during 
stimulation. One patient was generally more tired during the first 2 
weeks of stimulation in the sham group.

In the active group, 1 patient had tension neck and related slight 
unilateral headache during one of first stimulations, and one patient 
considered the stimulation-induced hand movements unpleasant. 
Placing a weight on the hand reduced this sensation.

In the sham group, 1 patient had very mild bilateral tenosynovitis in 
the wrists, which was resolved with a short etoricoxib treatment. One 
patient in the sham group felt tiredness in hands at stimulation onset. In 
the active group, 1 patient had pain in the right wrist during the first four 
sessions. This affected other rehabilitation, and high-PAS was postponed 
for 1 month. F-responses were remeasured and stimulation was started

with weaker intensity (Supplementary Methods). No pain occurred and 
stimulation was completed successfully.

No seizures were observed in this study.

Discussion

Twelve weeks of high-PAS initiated within 1–4 months after SCI 
improved recovery of weak muscles and improved fine motor control. A 
stronger recovery and more significant effect were observed in the 
muscles directly innervated by the stimulated nerves, emphasizing the 
specificity of the treatment.

Better improvement in MMT of muscles that had no antigravity 
movement before stimulation in the active group was also associated 
with better performance in BBT, 9HPT, and ADL test and better satis-
faction with daily life activities. This is consistent with our previous 
results in patients with chronic SCI where high-PAS improved motor 
performance in upper and lower limbs and was effective for tetra- and 
paraplegic patients with traumatic and nontraumatic injuries [30, 
40–46].

GS improved more in the sham than active group and no difference 
between groups was observed in the KP test. This could be due to 
compensatory activation patterns and consequent strengthening of less 
specific neural drive in the sham group supporting mass movements and 
tenodesis grip, as opposed to improved use of more physiologically 
correct fine movements enabled by more versatile corticomotor con-
nectivity and improved dexterity in the active group. When applied to 
SCI patients at the chronic stage, high-PAS did not worsen GS (that had 
already been developed) and even strengthened grip in some patients 
[30,40–46].

SCIM was not modified by high-PAS. Participation in the study did 
not interfere with other rehabilitation. Patients were instructed in self-
care skills reflected by SCIM at different timepoints and pace depending 
on their overall medical condition. This affected baseline values at the 
beginning of the study. SCIM does not exclusively reflect hand dexterity, 
which is the focus of high-PAS treatment, but also strongly depends on 
cognitive abilities and general health. The custom-made ADL test, which 
was designed to reflect hand dexterity only, and questions on subjective 
satisfaction with ADL improved more in the active group. In our previ-
ous studies on chronic SCI patients, SCIM improvements were occa-
sionally detected, depending on the length of the stimulation period [30, 
40–46].

Sensory functions or spasticity were not modified by high-PAS, 
consistent with previous results from chronic SCI patients [30,40–46]. 
As spasticity and pain medication change rapidly during the subacute 
period, interpretation of the possible modifications is challenging. 
Reduction of spasticity and pain medication over time was as evident in 
the active as in the sham group, suggesting that active treatment did not 
increase pain or spasticity. We are aware that drugs can modify the ef-
ficacy of neuroplasticity-inducing treatments [54,55], but evaluation of 
drug effects on outcomes was not possible in this study. The use of 
standard-of-care drugs (Table) did not prevent the high-PAS effect.

Sessions were incorporated into inpatient and outpatient rehabili-
tation. Although patients perceived this addition as somewhat time-
consuming, they were motivated to spend extra hours for an addi-
tional therapeutic opportunity. As opposed to other paired stimulation 
protocols that require combination of exercise simultaneously or 
immediately after the stimulation [56–58], high-PAS does not require 
synchronization with training, making its incorporation into rehabili-
tation schedules relatively easy. Although the high-PAS effect is specific 
for ISI [33], small deviations in calculating ISI are inevitable in clinical 
practice where neurophysiological recordings can be compromised (e.g., 
by spasticity, which does not prevent effective MEP increase by 
high-PAS) [38]. Single high-PAS sessions do not induce sympathetic 
nervous system activation in healthy subjects [59]. High-PAS thus ap-
pears both safe and feasible as an addition to conventional SCI 
rehabilitation.
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Table
Patient characteristics.

Patient
number

Etiology
 
of 

injury
Time since 
injury

 
at 

beginning
 
of 

stimulation, 
(months + days)

Neurological
level before 
stimulation

AIS
 
before 

stimulation
Right
or left-
handed

Active
or
sham

Comorbidities Conventional 
rehabilitation, 
inpatient (times
×
 

min/week)

Inpatient 
weeks out of 
12
 

stimulation
 

weeks

Conventional 
rehabilitation, 
outpatient 
(times × 

min/ 
week)

CNS-active drugs 
during

 
stimulation

 
period

 
(at least part of 

the time) (mg/day)

CNS-active drugs
at end of follow-
up
 
(mg/day)

1
 

Cervical 
spinal 
stenosis and 
fall

2
 
+
 

18
 

C3
 

D
 

Right S
 

Knee prosthesis, left 
shoulder operated years 
before injury

PT
 
4–5

 
x
 
45, OT 

4–5
 
x
 
60, pool 3

×
 

60, gym
 

1–2
 
x
 

30

5
 

PT
 
1
 
×
 

60, OT 1
×
 
60
 
or none

Baclofen
 
OD
 
5–10, 

mirtazapine OD 3.7–7.5

Baclofen
 
OD
 5–20, mirtazapine 

OD
 
3.7–7.5

2 Fall 2
 
+
 

10 C1 D Right S Mitral valve prolapse PT
 
3–4

 
x
 
45, OT 

4–5
 
x
 
60, gym

 
2

×
 

60

5
 

PT
 
1
 
×
 

45
 
or 

none
Tizanidine 6, 
gabapentin

 
900, 

oxycodone OD 
5–10, 

baclofen
 
5

Tizanidine OD
 
6

3
 

Vehicle 
accident

2
 
+
 

10
 

C1
 

D
 

Right A
 

Type II diabetes PT
 
4
 
×
 

60, OT 
4–5

 
x
 
60, pool 1

×
 

60, gym
 

2
 
×
 45

6
 

PT
 
1
 
×
 

60
 
or 

none, OT 1
 
×
 
60

Pregabalin
 
300-375, 

mirtazapine 7.5, 
oxycodone OD 

5, 
baclofen

 
25, melatonin

 
5

Baclofen
 
35, 

pregabalin
 
375, 

melatonin
 
5

4 Fall 4
 
+
 

11 C2 C Right A Lymphoma
 
years before 

injury
 
(in
 
remission), 

history
 
of depression 

before injury, type II 
diabetes, hypertension 

PT
 
4–5

 
x
 
60, OT 

4–5
 
x
 
60

12
 

PT
 
2
 
×
 

60, OT 1
×
 
60

Escitalopram
 

10, 
gabapentin

 
1200-

1800, temazepam
 

OD
 10-20

Escitalopram
 

10, 
temazepam

 
OD
 10-20

5 Fall 1
 
+
 

15 C4 D Right S Migraine PT
 
4
 
×
 

60, OT 4
×
 

60
6
 

PT
 
2
 
×
 

60
 
or 

none, OT 1
 
×
 
60
 

or none

Pregabalin
 
250-300, 

oxycodone/naloxone 
15/7.5, tizanidine OD
2–4, oxycodone OD
10, lorazepam

 
OD
 
1-2
 

None

6
 

Trampoline 
accident

1
 
+
 

8
 

C3
 

D
 

Left A
 

Hypertension, asthma, 
splenectomy

 
years before 

injury

PT
 
4–5x45–60, 

OT
 
4–5

 
x
 
60, 

gym
 

2–3x45

2
 

PT
 
0.5–1x60, OT 

0.4–1
 
x
 
45-60

Pregabalin
 
300, 

baclofen
 
45, 

oxycodone/naloxone 
10, lorazepam

 
1, 

oxycodone OD 
5–20, 

amitriptyline 10, 
zopiclone OD 

7.5
 

Baclofen
 
60, 

pregabalin
 
100, 

clonazepam
 

OD
 0.5

7
 

Diving
 

accident
2
 
+
 

14
 

C6
 

B
 

Right S
 

Asthma
 

PT
 
5
 
×
 

60, OT 4
×
 

60, gym
 

2–3
 
x
 

45

8
 

PT
 
1.5–2

 
x
 
60, 

OT
 
1
 
×
 

90
 
or 

none

Pregabalin
 
225, 

quetiapine OD 
25

Quetiapine OD 12.5

9
 

Sledding
 

accident
1
 
+
 

20
 

C4
 

D
 

Left A
 

None PT
 
4–5

 
x
 
60, OT 

4–5
 
x
 
60

0
 

PT
 
0.5
 
×
 
60
 
or 

none, OT 0.5
 
×
 60

 
or none

None None

10 Fall 2
 
+
 

16 C5 D Right S Hypercholesterolemia PT
 
4–5

 
x
 
60, OT 

4–5
 
x
 
60, gym

 2–3
 
x
 
45

7
 

PT
 
0.5
 
×
 
45, OT 

0.5
 
×
 
45

Baclofen
 
15–45, 

gabapentin
 
900

Baclofen
 
45, 

gabapentin
 
900

11
 

Fall 1
 
+
 

29
 

C5
 

D
 

Left A
 

Intermittent atrial 
fibrillation, coronary 
artery

 
disease, asthma, 

history
 
of smoking

PT
 
3–5

 
x
 
30–60, 

OT
 
3–5

 
x
 
30–90, 

pool 1 ×
 
45, gym

 2–3
 
x
 
45

9
 

PT
 
0.5–1x45–60, 

OT
 
0.5
 
×
 

60
Baclofen

 
30–35, 

pregabalin
 
375, 

zopiclone OD 
7.5, 

paracetamol/codeine 
OD
 
500/30

Baclofen
 
5–15, 

pregabalin
 
150, 

paracetamol/ 
codeine OD 

500/ 
30
 

12
 

Violence 1
 
+
 

24
 

C4
 

D
 

Right S
 

None PT
 
5
 
×
 

45-60, 
OT
 
4
 
×
 

60, gym
 2–3

 
x
 
45

9
 

PT
 
1–2

 
x
 
60
 
or 

none, OT 1
 
×
 
60
 

or none

Baclofen
 
10–50, 

gabapentin
 
2100-

3600, nortriptyline 
25–100, oxycodone-
naloxone 15–20,

Baclofen
 
75, 

gabapentin
 
3600, 

oxycodone 40 mg
 

x
 
1, oxycodone 

OD
 
5-30

 
(continued

 
on
 

next page)
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Table
 
(continued

 
)

Patient
number

Etiology
 
of 

injury
Time since 
injury

 
at 

beginning
 
of 

stimulation, 
(months + days)

Neurological
level before 
stimulation

AIS
 
before 

stimulation
Right
or left-
handed

Active
or
sham

Comorbidities Conventional 
rehabilitation, 
inpatient (times
×
 

min/week)

Inpatient 
weeks out of 
12
 

stimulation
 

weeks

Conventional 
rehabilitation, 
outpatient 
(times × 

min/ 
week)

CNS-active drugs 
during

 
stimulation

 
period

 
(at least part of 

the time) (mg/day)

CNS-active drugs
at end of follow-
up
 
(mg/day)

ketamine OD 
50–100, 

oxycodone OD 
5–40, 

temazepam
 

OD
 
20, 

buprenorphine 20 μg/ 
h, venlafaxine 225 

13
 

Cervical 
fracture, 
reason

 
unknown

2
 
+
 

21
 

C5
 

B
 

Right S
 

Type II diabetes, 
hypertension, atrial 
fibrillation

PT
 
5
 
×
 

60, OT 
3–5

 
x
 
60–120, 

gym
 

2
 
×
 

45

12
 

PT
 
1
 
×
 

60
 
or 

none, OT 0.6
 
×
 60, pool 0.5 ×
 60

Baclofen
 
30–75, 

mirtazapine 7.5, 
pregabalin

 
300-600, 

oxycodone OD 
5–20, 

zopiclone OD 
7.5, 

clonazepam
 

1–1.5, 
buprenorphine 10 μg/ 
h

Baclofen
 
75, 

buprenorphine 15 
μg/h, gabapentin 
1800, clonazepam

 1.5, tizanidine 4

14 Fall 1
 
+
 

16 C3 D Right A Hip
 
arthroplasty

 
years 

before injury, diffuse 
idiopathic skeletal 
hyperostosis, 
hypertension, 
hypercholesterolemia

 

PT
 
4–5

 
x
 
45–60, 

OT
 
3–5

 
x
 
60, 

gym
 

2
 
×
 

45

2
 

PT
 
0.5
 
×
 
60
 
or 

none, OT 0.4
 
×
 60

Baclofen
 
10, 

pregabalin
 
75, 

temazepam
 

OD
 
10

None

15
 

Cervical 
spinal 
stenosis 

1
 
+
 

18 C1 D Right A Hypertension PT
 
4–5

 
x
 
45–60, 

OT
 
4–5

 
x
 
60, 

gym
 

2–3
 
x
 
60
 

10
 

PT
 
1
 
×
 

60, OT 
0.7
 
×
 
60-90

Gabapentin
 
1200, 

baclofen
 
15

Gabapentin
 
1200, 

baclofen
 
15

16
 

Spinal 
infarction

2
 
+
 

7 C3 D Right S None PT
 
5
 
×
 

45-60, 
OT
 
3–5

 
x
 
60, 

pool 1–2
 
x
 
45

4
 

PT
 
1
 
×
 

45, OT 
0.7
 
×
 
45, pool 

0.5
 
×
 
45

Gabapentin
 
600-900, 

tizanidine OD 
2-6

Tizanidine OD 
2-6

17 Fall 2
 
+
 

1 C6 D Right S None PT
 
3–5

 
x
 
30–60, 

OT
 
3–5

 
x
 
60, 

gym
 

2–3
 
x
 
45-60

10
 

PT
 
1
 
×
 

45, OT 
0.5
 
×
 
45-60, 

pool 0.5 ×
 

45

Gabapentin
 
600-1200, 

baclofen
 
60

Gabapentin
 
1500, 

baclofen
 
60, 

tizanidine 8, 
buprenorphine 5 
μg/h

18
 

Fall 3
 
+
 

13
 

C5
 

D
 

Right A
 

Hypertension
 

PT
 
3–5

 
x
 
30–60, 

OT
 
3–5

 
x
 
60, 

gym
 

2–3
 
x
 
45-60

7
 

PT
 
1.5
 
×
 
45, OT

1
 
×
 
60, pool 0.5

×
 
45

Baclofen
 
25, 

pregabalin
 
300-400, 

melatonin
 
3

Baclofen
 
25, 

melatonin
 
3

CNS, central nervous system; PT, physiotherapy; OT, occupational therapy; OD, on demand.
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The effects of the stimulation were not limited to the muscles 
innervated by the stimulated nerves, although the effect in muscles 
belonging to these nerves was more profound, highlighting the speci-
ficity of the stimulation. In high-PAS, the PNS train is applied with an 
intensity that is sufficient to activate lower motoneuron cell bodies at 
the spinal-cord level, as ensured by F-response measurements [37]. 
Therefore, a PNS-induced pulse train applied to a peripheral branch is 
thought to induce activation of the larger pool of the lower motoneurons 
and intervening interneurons and together with TMS promote plastic 
changes at the spinal-cord level between upper and lower motoneurons 
and their interneurons [30]. In our previous studies where measure-
ments for high-PAS were made utilizing MEP and F-responses obtained 
from electrodes placed on the abductor hallucis and stimulation tar-
geting the tibial nerve, changes in H-reflex pathway measured from the 
soleus confirmed the hypothesis that changes occur at the spinal level 
affecting the targeted myotome [33]. Activation of the surrounding re-
gions of the motor cortex by high-intensity TMS is also very plausible 
[30].

This study had limitations. As expected for the subacute period, 
fluctuations in the patients’ overall medical condition, drug dosages, 
and other factors were evident within both groups, and performance 
expectedly increased in both groups. Baseline values were affected by 
the exact time of the treatment start, injury severity, and other patient-
specific factors. Moreover, the overall number of participants was rela-
tively small. Despite this, we detected a significant effect of high-PAS. 
Although patients with psychiatric comorbidities, progressive condi-
tions, or age <18 or >75 years were excluded, in clinical practice high-
PAS could also be effective for such patients. Further studies are also 
needed to characterize the role of factors such as extent of lower motor 
neuron damage that affect responsiveness to high-PAS [40,60,61].

No seizures were observed in this study. 1-Hz stimulation is consid-
ered low frequency [18]; here we used 0.2 Hz with single pulses. For low 

frequencies, seizure induction is considered rare, or this type of stimu-
lation can be considered even protective [18]. Frequencies <1 Hz have 
been used without incident and no recommendations exist on maximal 
intensities for such frequencies in safety guidelines [62]; this has not been 
changed in later updates [18,63]. PAS protocols in general have not been 
associated with seizures [63]. Here, brain pathologies have been 
excluded prior to participation by brain MRI evaluated by a neuroradi-
ologist. If including patients with brain pathologies in clinical work, 
safety guidelines should be consulted concerning allowed stimulation 
settings and management of possible related adverse events [18,62,63]. 

In conclusion, this study is the first sham-controlled clinical trial to 
demonstrate that high-PAS is a safe, feasible, and potentially effective 
addition to rehabilitation after incomplete SCI even at a very early stage 
after injury. The subacute phase was selected for high-PAS intervention 
because neuroplasticity is believed to peak early after SCI, offering a 
critical window for recovery. At this stage, weaker descending pathways 
still retain better partial function, and muscles have not yet undergone 
irreversible degeneration. Our findings suggest that applying stimula-
tion during this period can effectively engage residual neural circuits 
and promote motor improvement. The use of high-PAS for other patient 
groups also warrants further investigation. High-PAS could also be an 
attractive option as an additional therapy combined with experimental 
stem cells and pharmacological treatments that must be administered at 
very early stages after SCI [2,7].
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