Neurotherapeutics xxx (XXXX) XXX

Contents lists available at ScienceDirect

Neurotherapeutics

Neurotherapeutics

journal homepage: www.sciencedirect.com/journal/neurotherapeutics

ELSEVIER

Original Article

Paired associative stimulation improves outcomes when applied at the
subacute stage after incomplete cervical spinal cord injury

Anastasia Shulga > ", Anna Nitkynmaiki *°, Anna-Lena Pelkonen ', Markus Pohjonen ?,
Sarianna Savolainen ', Erika Kirveskari **, Nina Brandstack °, Jyrki P. Mikela ', Jari Arokoski *

D BioMag Laboratory, HUS Diagnostic Centre, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland
2 Department of Internal Medicine and Rehabilitation, Division of Rehabilitation, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
%) Faculty of Sport and Health Sciences, University of Jyviskyld, Jyviskyld, Finland

4 HUS Medical Imaging Centre, Clinical Neurophysiology, Clinical Neurosciences, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
%) HUS Medical Imaging Centre, Neuroradiology, Clinical Neurosciences, Helsinki University Hospital and University of Helsinki, Helsinki, Finland

ARTICLE INFO ABSTRACT

Keywords:

Paired associative stimulation
Spinal cord injury

Transcranial magnetic stimulation

We conducted a randomized sham-controlled clinical trial from 2019 to 2024 to characterize the safety and
efficacy of applying paired-associative stimulation (PAS), consisting of high-intensity transcranial magnetic
stimulation and high-frequency peripheral nerve stimulation, at early stages after incomplete spinal cord injury
(SCI) to enhance motor recovery. Patients with incomplete cervical SCI were randomized 1:1 within 1-4 months
post-injury to receive 12 weeks of PAS or sham stimulation alongside conventional rehabilitation, which was not
changed. Patients were followed up to 1.5 years after injury (about 1 year after end of stimulation). Seventeen
patients (14 males, age 53 + 16 years) participated. Manual Muscle Test revealed a significant effect of treatment
in favor of active group (F (1, 470) = 14.69; p < 0.001) in muscles that had no antigravity activity before
beginning of stimulation. Improvement from baseline was observed at the end of stimulation (active: 346 + 53
%, sham: 215 + 26 %), 1 year after injury (about 6 months after end of treatment; active: 389 + 61 %, sham: 241
+ 39 %), and at 1.5 years after injury (about 12 months after end of treatment; active: 419 + 73 %, sham: 210 £
17 %). Greater improvement in fine motor skill tests was observed in the active group. Although the Spinal Cord
Independence Measure showed no differences between groups (p = 0.36-0.83), there was improvement in ac-
tivity of daily living tests. The intervention was feasible and well-tolerated in both groups. PAS is a safe and
feasible therapy that can be added to conventional rehabilitation even in early stages after SCL

Introduction

Spinal cord injury (SCI) severely affects quality of life and imposes a
significant economic burden [1]. Worldwide, over 2.5 million people are
affected by SCI [2]; a large proportion of SCIs are incomplete, with
preserved connectivity [3-5]. Few therapeutic approaches have pro-
gressed to clinical practice, and safe, noninvasive, feasible, and timely
treatments are needed [6-8]. Strengthening residual pathways after
incomplete SCI through non-invasive neuromodulation has gained
considerable attention [9,10]. Long-term potentiation (LTP) [11]-like
effects, depending on the cooperativity and associativity of neuronal
activation, can counteract the connectivity weakness after neuronal
trauma and disease. Evidence from animal studies indicates that stim-
ulation inducing spike-time-dependent (STDP)-like plasticity between

upper and lower motor neurons is a promising tool for strengthening the
residual connectivity and promoting recovery [12,13].

Transient plastic changes in the human corticospinal tract can be
induced through paired-associative stimulation (PAS) [14-17].
PAS-induced changes in neuronal connectivity represent a form of STDP
[14]. In cortical PAS, transcranial magnetic stimulation (TMS) [18] over
the human primary motor or sensory cortex is paired with peripheral
electrical nerve stimulation (PNS) of somatosensory afferents to alter
neuronal excitability at the cortical level [14,19]. Spinal PAS targets the
human spinal cord. In spinal PAS, orthodromic volleys induced by TMS
in upper motor neurons and antidromic volleys induced by PNS in lower
motor neurons are intended to arrive in a synchronous manner to the
corticomotoneuronal synapses of the corticospinal tract [20-23].
Increasing evidence shows that the therapeutic potential of various PAS
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protocols for incomplete SCI patients is promising and should be further
explored [24-28]. More randomized controlled trials are needed to
clarify the effect of PAS in patients with SCI [27].

We previously developed a new version of PAS designed as a therapy
for incomplete SCI (high-PAS) that utilizes high-intensity TMS and high-
frequency PNS. PAS protocols that utilize single-pulse PNS and single-
pulse TMS that is slightly above motor threshold utilize the STDP
model in which synaptic input to dendrites is active just before a somatic
input. However, this model is now considered as simplified [17]. Plas-
ticity induction does not depend only on spike timing but also on firing
rate, postsynaptic voltage, and synaptic cooperativity [29]. For
example, in experiments using brain tissue slices, connections exhibited
classical STDP only when presynaptic and postsynaptic spikes occurred
at moderate firing rates (10-20 Hz); higher firing rates (>30 Hz)
induced LTP independent of spike timing [29]. We utilized
high-frequency PNS and high-intensity TMS to create multiple in-
teractions at the spinal-cord level and to make the PAS protocol clini-
cally more feasible and the results more stable [30]. TMS delivered at
high intensity creates multiple orthodromic volleys [31,32], and
high-frequency PNS creates multiple antidromic volleys. Both activa-
tions collide at the spinal-cord level [33]. When both LTP and long-term
depression (LTD)- producing interactions occur at the same time, LTP
wins over LTD [34]. This could explain why the high-PAS protocol
produces stable and efficient motor-evoked potential (MEP) amplitude
increase in healthy subjects [30,35-39] and stable and long-lasting
improvement in motor performance in patients with incomplete SCI
[30,40-46]. Due to multiple interactions, the exact site of action is more
challenging to define than that for PAS protocols that use single TMS and
PNS pulses [30]. However, similar to single-pulse PAS, high-PAS also
can specifically target the spinal level, with its outcome depending on
the interstimulus interval (ISI) between TMS and PNS [33,47].

Neuromodulation studies requiring long-term administration at
subacute stages after neurological insults are challenged by spontaneous
recovery and by the overall burden of the acute medical condition.
However, it is crucial to investigate whether neuromodulation could
safely and non-invasively benefit patients early after injury, since this is
the period of greatest plasticity [4] and long-term changes in muscles
have not yet occurred [48]. We conducted a double-blind randomized
clinical trial to investigate the effect of high-PAS during the early phase
after SCI. Treatment was started 1-4 months post injury during inpatient
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rehabilitation and continued for 12 weeks, including time after
discharge home and outpatient rehabilitation. We show that high-PAS
modulates motor recovery and particularly promotes restoration of
fine movements.

Methods

The study was registered at clinicaltrials.gov (NCT04101916). The
study was approved by the Ethics Committee of Medicine of the Helsinki
University Hospital. All patients provided written informed consent.

Patient selection and randomization

This trial was double-blind randomized and sham-controlled with a
1:1 allocation ratio. Patients were recruited at the Helsinki University
Hospital SCI inpatient ward. Seventeen patients (14 males, mean [+SD]
age 53 [+16]) participated (Fig. 1). See Supplementary Methods for
details on recruitment, randomization, and blinding.

Timetable and conventional rehabilitation

The time of stimulations was not linked to physical or occupational
therapies. The stimulation schedule minimally affected conventional
rehabilitation and patient preferences were considered. Participation
did not change the rehabilitation or medications of the patients, and the
patient's medical team was not aware of their group allocation.

Stimulations were given 5 times per week during the first 2 weeks
and 3 times per week for 10 subsequent weeks. Most stimulations
adhered to this schedule, but some small occasional exceptions were
allowed if needed (e.g., to accommodate urgent medical situations).
Missed sessions were conducted later.

Stimulation protocol

See Supplementary Methods and Fig. 2 for a full description of pre-
stimulation measurements and stimulation settings. Active stimulation
has also been described in detail and discussed previously [30]. Sham
stimulation settings were designed to resemble active stimulation as
closely as possible.

133 patients accessed for eligibility
(all patients with tetraplegia admitted to SCl ward at Helsinki University Hospital between October 2019 and February 2024)

115 patients excluded

* 86 due to failing inclusion/exclusion criteria

* 7 refused to participate

* 11 not living in Helsinki area,

participation after discharge would not have been possible
* 11 had normal or almost normal hand dexterity

18 patients randomized

test performance at 1 month post injury

9 patients assigned to active group

* 8received intervention as assigned

« 1did not receive assigned intervention

(had to undergo additional surgical procedure soon
after randomization and refused further participation)

0 lost to follow-up
0 discontinued intervention

8included in analysis
1 excluded from analysis (had to undergo surgical procedure|
soon after randomization and refused further participation)

9 patients assigned to sham group
* 9received intervention as assigned

1 discontinued intervention after receiving 30/40
stimulations and participated only in 1 year follow up but
did not want to participate in other follow ups

1 did not want to participate in 1.5 years follow up but
participated in all other follow-ups

!
9included in analysis

Fig. 1. CONSORT flow diagram of the trial.
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ACTIVE

Fig. 2. Paired-associative stimulation setup. A, Active setup pre-measurements. Interstimulus interval between TMS and PNS is calculated with the formula [F
latency minus MEP latency]. B, Active PNS pattern. C, Position of active and sham PNS electrodes.

Pre-stimulation measurements

Briefly, for active stimulation we measured minimum latencies of F-
responses to 0.2-ms pulses at supramaximal intensity from median,
ulnar, and radial nerves (Fig. 2) [47]. We also recorded minimum PNS
intensity required to produce persistent F-responses to 1-ms pulses for
the same nerves to be used later as PNS stimulation intensity. This en-
sures the use of the lowest possible intensity at which motoneurons of
the spinal cord are reached [37,47,49]. Recording electrodes were
placed on the abductor pollicis brevis (APB), abductor digiti minimi
(ADM), and extensor digitorum (ED) for median, ulnar, and radial
nerves, respectively. The same recording electrode placement was used
for cortical mapping with TMS as we defined hotspots for APB, ADM,
and ED [30]. Fifteen MEPs from each hotspot were sampled and their
average latency calculated for ISI. ISI was calculated with the formula F
latency — MEP latency] [47]. ISIs varied from —6.8 to +8.7 (see Sup-
plementary data for patient-specific settings).

For sham treatment, stimulation electrodes were not above the motor
nerves (Fig. 2) and stimulation settings were trains or three 40-ps pulses
at 3 Hz. We individually determined minimum intensity to elicit a slight
skin sensation that led to individual intensities of 4-15 mA. TMS map-
ping was performed with a 7.5-cm plastic isolator between the coil and
head surface. The researcher performing the recordings recreated the
active stimulation setup as much as possible. Recording electrodes for
TMS responses and PNS were in the same places as in active stimulation.

Stimulation protocol

Active: TMS and PNS were triggered at a pre-defined ISI. TMS was
delivered over each hotspot at 100 % of stimulator output (SO) paired
with PNS of the corresponding nerve (APB with median, ADM with
ulnar, and ED with radial). The radial nerve was gently pressed against
the skin and the movement elicited by it was monitored to ensure correct
activation of the nerve. PNS was delivered (Fig. 2) in trains of six 1-ms
pulses at 100 Hz [36,39] at intensity determined in pre-measurements
[30]. PAS was given every 5 s for 20 min (240 pairings) for each
nerve [36]. If needed, EMLA lidocaine-prilocaine ointment was applied

to minimize discomfort from PNS, and PNS intensity was gradually
increased to the required level by asking for patient consent for each
increase (see Refs. [30,50] for details). TMS was generally tolerable and
delivered at 100 % SO from the beginning. During stimulation, patients
were instructed to very slightly preactivate the muscles innervated by
stimulated nerve just before each TMS click (see Supplementary data). If
this was not possible or became difficult due to fatigue, the patient was
instructed to imagine the corresponding movement [30]. Patients were
not allowed to engage in any other activity, such as long discussions or
listening to music during stimulation [30,35,51].

Sham: Equipment, environment, staff, amount, stimulation dura-
tion, and use of motor preactivation or imagery was the same as in the
active condition. TMS was delivered at 100 % SO with the use of 7.5-cm
plastic isolator. PNS was given through electrodes at sham positions
(Fig. 2) with trains of three 40-ps pulses at 3 Hz at an intensity of just
about sensory threshold [52]. Stimulation was triggered every 5 s as in
active stimulation.

Outcome measures

Patients were assessed by two physiotherapists with extensive
experience in SCI who carefully synchronized their evaluation methods.
If possible, each patient had the same physiotherapist at every follow up
(12/17 patients).

Primary endpoints: Daniels and Worthingham's Manual Muscle Test
(MMT) score on a 0-5 scale was sampled from each muscle (see Sup-
plementary Table 1 for test explanation and muscle list) of each hand of
each patient before (PRE) and after (POST) treatment, and at 1 year (1Y)
and 1.5 years (1.5Y) after injury, corresponding to about 6 months and
12 months after end of treatment, respectively. To avoid the ceiling ef-
fect of the test and lack of sensitivity between antigravity (3-5) muscle
strength grades [53], muscles with no antigravity activity (0-2) at PRE
timepoint, having potential to at least double the score and not requiring
evaluation of external resistance, were analyzed separately from mus-
cles having antigravity (3-5) activity at PRE. Spinal Cord Independence
Measure (SCIM) was collected from each patient at the same timepoints.
Alpha level was adjusted to 0.025 to compensate for two primary
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endpoints for SCIM, and further to 0.0125 for MMT to compensate for
separate analysis of muscles.

Additional, non-pre-registered outcomes (exploratory supporting evi-
dence): standard 9-hole peg test (9HPT), Box and Blocks test (BBT), key
pinch (KP) and grip strength (GS) tests, activity of daily living (ADL) test
custom designed by an experienced SCI physiotherapist (SS, Supple-
mentary Table 2), sensory function (mean average of light touch [LT]
and pin prick [PP] scores of International Standards for Neurological
Classification of SCI [ISNCSCI] Worksheet), and standard upper and
lower extremity spasticity evaluation (Modified Ashworth Scale [MAS])
were sampled from each hand of each patient at the same times as above.
One additional test at 6 months after injury (6 M) was performed. In
addition, patients answered the question 17 of WHOQOL-BREF ques-
tionnaire “How satisfied are you with your ability to perform your daily
living activities? (over last two weeks)” on a scale of 1-5 (5-very satis-
fied, 1-very dissatisfied) at the time of MMT and SCIM tests.

Statistical analysis

Analysis was carried out by original assigned groups. Data are pre-
sented as mean + standard error (SE). For SCIM and “performance in
daily life” question, we used Kruskal-Wallis test on IBM SPSS Statistics
30.0. For all other tests, to account for bilateral data, we used linear
mixed model on IBM SPSS Statistics 30.0 with treatment and time as
fixed effects and a random intercept dependent on the individual
included in the model. For MMT, our sample size was sufficiently large
to include hand dominance as an additional fixed effect. The model was
estimated using the Restricted Maximum Likelihood (REML) method.

All data are presented and analyzed as percent change from each
corresponding PRE value ((timepoint value — PRE value)/PRE val-
ue*100). PRE value is the value of the same hand measured within 1
week before beginning treatment. In patients having PRE value zero in

muscles innervated allmuscles, all muscles,
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one hand (3 patients in 9HPT [2 active + 1 sham], 2in BBT [1 + 1], 2in
ADL[1 +1],2inKP [1 + 1], 3in GS [1 + 2], and 3 in MAS [1 + 21), the
PRE value for each hand was the mean average PRE value of both hands
to avoid dividing by zero. One patient had zero values for both hands in
9HPT and one in MAS; for these, 0 was substituted by 0.25. For MMT,
the PRE value for each muscle is the mean average PRE score of all
muscles of the same hand (muscles innervated by stimulated nerves or
all measured muscles having 0-2 or 3-4 points at baseline for each
corresponding analysis).

Results
Primary outcome measures

MMT: In muscles innervated by stimulated nerves, we observed a
significant effect of time (F (1, 470) = 66.66, p < 0.001) and treatment in
muscles with no antigravity activity (0-2 scores) at PRE (F (1, 470) =
14.69, p < 0.001). Although both groups improved, the active group had
greater percent changes in MMT than the sham group at all time points
(Fig. 3A, POST 346 + 53 % active vs 215 + 26 % sham; 1Y 389 + 61 %
active vs. 241 + 39 % sham; 1.5Y 419 + 73 % active vs 210 + 17 %
sham). We observed a significant effect of hand dominance (F (1, 470) =
10.85, p = 0.001); improvement was stronger in the dominant than non-
dominant hand in both groups at all timepoints (350 + 29 % dominant
vs 197 £+ 10 % non-dominant). When all muscles were analyzed, sig-
nificant effects of the same direction of time (F (1, 543) = 83.79, p <
0.001), treatment (F (1, 543) = 7.28, p = 0.007), and hand (F (1, 543) =
11.61, p < 0.001) were also found; the size effect and significance of
treatment was slightly weaker than in muscles innervated by the stim-
ulated nerves (Fig. 3A, POST 237 + 35 % active vs 215 + 26 % sham; 1Y
357 + 51 % active vs 237 + 36 % sham; 1.5Y 369 + 59 % active vs 210
+ 17 % sham). In muscles with antigravity (3-4) activity at timepoint
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Fig. 3. Active group improved more than sham group in MMT, BBT, 9HPT, and ADL tests. 6 M, 1Y, and 1.5Y indicate 6 months, 1 year, and 1.5 years since injury,
respectively. A, MMT results from muscles with no antigravity activity before stimulation (MMT score 0-2) derived either from muscles innervated only by stim-
ulated median, ulnar, and radial nerves (left) or all measured upper limb muscles (middle) and all measured muscles with antigravity activity (MMT score 3—-4) before
stimulation. See Supplementary Table 1 for the list of muscles. For muscles with no antigravity activity before stimulation, the improvement in active group was
significantly better than in sham group in muscles innervated by stimulated nerves (F (1, 470) = 14.69, p < 0.001) and in all muscles (F (1, 543) = 7.28, p = 0.007).
For muscles with 3-4 antigravity activity before stimulation, sham group performed slightly better (F (1, 2206) = 6.8, p = 0.009). B, 9HPT. Active group improved
more than sham group (F (1,159) = 4,1, p = 0.044). C, BBT. Active group improved more than sham group (F (1, 161) = 10, p = 0.002). D, ADL test. Active group
improved more than sham group (F (1, 157) = 5.4, p = 0.022). E, Grip strength. Active group improved less than sham group (F (1,161) = 4.7, p = 0.032). F,
Satisfaction with ability to perform daily life activities. There was greater improvement in the active group at POST (p = 0.032), but not at 1Y (p = 0.27) or 1.5Y
(@ =0.4).
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PRE, marginal improvement occurred in both groups (Fig. 3A) and a
small difference favored the sham group (F (1, 2206) = 6.8, p = 0.009)
(POST 17 £ 1 % active vs 20 &= 1 % sham; 1Y 20 & 1 % active vs 25 £ 1
% sham; 1.5Y 21 & 1 % active vs 23 & 1 % sham). Muscles with score of
5 at PRE were excluded from the analysis as no improvement in these
muscles could be expected.

SCIM: At the subacute stage, medical staff taught the patients basic
selfcare skills reflected by SCIM at different timepoints and pace
depending on their overall medical condition, and thus baseline values
of SCIM did not reflect pure hand dexterity. No effect of treatment was
detected (POST p = 0.83, active 24 + 6 %, sham 38 + 15 %; 1Y p = 0.36,
active 26 + 6 %, sham 55 + 19 %; 1.5Y p = 0.36, active 27 + 10 %, sham
47 £ 18 %).

Additional outcomes (exploratory supporting evidence)

9HPT: Time (F (1, 159) = 6.2, p = 0.014) and treatment (F (1,159) =
4.1, p = 0.044) affected 9HPT performance. Greater improvement was
observed in the active than sham group (Fig. 3B).

BBT: There was an effect of treatment (F (1,161) = 10, p = 0.002),
with greater improvement in the active than sham group, and of time (F
(1, 161) = 9.1, p = 0.003) (Fig. 3C).

ADL test: Treatment affected ADL (F (1, 157) = 5.4, p = 0.022), which
increased more in the active than sham group. Time (F (1, 157) = 2.1, p
= 0.1) did not affect ADL (Fig. 3D). See Fig. 3F for patient satisfaction
with ability to perform daily life activities.

KP: Time increased pinch strength (F (1, 161) = 9.9, p = 0.002), with
no difference between groups (p = 0.61) (POST active 61 + 23 %, sham
72 4+ 29 %; 6 M active 61 & 23 %, sham 77 &+ 29 %; 1Y active 88 4= 33 %,
sham 72 + 29 %; 1.5Y active 82 + 41 %, sham 128 + 33 %).

GS: Time (F (1, 161) = 23.2, p < 0.001) and treatment (F (1,161) =
4.7, p = 0.032) affected GS. Less improvement was observed in the
active than sham group (Fig. 3E).

Sensory function: No effect of time (p = 0.73) or treatment (p = 0.27)
was observed (POST active —3+5 %, sham 8 + 4 %; 6 M active 0 & 6 %,
sham —1 44 %; 1Y active —3 & 5 %, sham 9 4 7 %; 1.5Y active 5 & 6 %,
sham —3 4+ 3 %).

Spasticity: Multiple changes occurred in spasticity medication in both
groups during the subacute period; 2/6 patients in the active group and
2/8 patients in the sham group had less spasticity medication at 1.5Y
than during the stimulation (Table). No effect of time (p = 0.38) or
treatment (p = 0.85) was observed (POST active 14 + 4 %, sham 50 +
35 %; 6 M active —19 4 4 %, sham 8 & 27 %; 1Y active 0 & 4 %, sham 25
+ 29 %; 1.5Y active 99 + 4 %, sham —19 + 22 %).

Pain: A reliable assessment of the effect of the intervention on pain
was not feasible due to numerous changes in overall pain medication
during the subacute period after SCI and because the complex nature of
post-SCI pain is not confined to upper limbs. A total of 5/7 patients in the
active and 5/8 patients in the sham group had less neuropathic pain
medication at 1.5Y than during the stimulation. For opiate-based
medication, the corresponding patient numbers were 2/3 (active) and
3/4 (sham) (Table).

Possible side effects: Five patients in the sham group and 4 patients in
the active group had occasional overall tiredness or sleepiness during
stimulation. One patient was generally more tired during the first 2
weeks of stimulation in the sham group.

In the active group, 1 patient had tension neck and related slight
unilateral headache during one of first stimulations, and one patient
considered the stimulation-induced hand movements unpleasant.
Placing a weight on the hand reduced this sensation.

In the sham group, 1 patient had very mild bilateral tenosynovitis in
the wrists, which was resolved with a short etoricoxib treatment. One
patient in the sham group felt tiredness in hands at stimulation onset. In
the active group, 1 patient had pain in the right wrist during the first four
sessions. This affected other rehabilitation, and high-PAS was postponed
for 1 month. F-responses were remeasured and stimulation was started
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with weaker intensity (Supplementary Methods). No pain occurred and
stimulation was completed successfully.
No seizures were observed in this study.

Discussion

Twelve weeks of high-PAS initiated within 1-4 months after SCI
improved recovery of weak muscles and improved fine motor control. A
stronger recovery and more significant effect were observed in the
muscles directly innervated by the stimulated nerves, emphasizing the
specificity of the treatment.

Better improvement in MMT of muscles that had no antigravity
movement before stimulation in the active group was also associated
with better performance in BBT, 9HPT, and ADL test and better satis-
faction with daily life activities. This is consistent with our previous
results in patients with chronic SCI where high-PAS improved motor
performance in upper and lower limbs and was effective for tetra- and
paraplegic patients with traumatic and nontraumatic injuries [30,
40-46].

GS improved more in the sham than active group and no difference
between groups was observed in the KP test. This could be due to
compensatory activation patterns and consequent strengthening of less
specific neural drive in the sham group supporting mass movements and
tenodesis grip, as opposed to improved use of more physiologically
correct fine movements enabled by more versatile corticomotor con-
nectivity and improved dexterity in the active group. When applied to
SCI patients at the chronic stage, high-PAS did not worsen GS (that had
already been developed) and even strengthened grip in some patients
[30,40-46].

SCIM was not modified by high-PAS. Participation in the study did
not interfere with other rehabilitation. Patients were instructed in self-
care skills reflected by SCIM at different timepoints and pace depending
on their overall medical condition. This affected baseline values at the
beginning of the study. SCIM does not exclusively reflect hand dexterity,
which is the focus of high-PAS treatment, but also strongly depends on
cognitive abilities and general health. The custom-made ADL test, which
was designed to reflect hand dexterity only, and questions on subjective
satisfaction with ADL improved more in the active group. In our previ-
ous studies on chronic SCI patients, SCIM improvements were occa-
sionally detected, depending on the length of the stimulation period [30,
40-46].

Sensory functions or spasticity were not modified by high-PAS,
consistent with previous results from chronic SCI patients [30,40-46].
As spasticity and pain medication change rapidly during the subacute
period, interpretation of the possible modifications is challenging.
Reduction of spasticity and pain medication over time was as evident in
the active as in the sham group, suggesting that active treatment did not
increase pain or spasticity. We are aware that drugs can modify the ef-
ficacy of neuroplasticity-inducing treatments [54,55], but evaluation of
drug effects on outcomes was not possible in this study. The use of
standard-of-care drugs (Table) did not prevent the high-PAS effect.

Sessions were incorporated into inpatient and outpatient rehabili-
tation. Although patients perceived this addition as somewhat time-
consuming, they were motivated to spend extra hours for an addi-
tional therapeutic opportunity. As opposed to other paired stimulation
protocols that require combination of exercise simultaneously or
immediately after the stimulation [56-58], high-PAS does not require
synchronization with training, making its incorporation into rehabili-
tation schedules relatively easy. Although the high-PAS effect is specific
for ISI [33], small deviations in calculating ISI are inevitable in clinical
practice where neurophysiological recordings can be compromised (e.g.,
by spasticity, which does not prevent effective MEP increase by
high-PAS) [38]. Single high-PAS sessions do not induce sympathetic
nervous system activation in healthy subjects [59]. High-PAS thus ap-
pears both safe and feasible as an addition to conventional SCI
rehabilitation.



Table

Patient characteristics.

Patient Etiology of Time since Neurological AIS before Right Active Comorbidities Conventional Inpatient Conventional CNS-active drugs CNS-active drugs

number  injury injury at level before stimulation or left- or rehabilitation, weeks out of rehabilitation, during stimulation at end of follow-

beginning of stimulation handed sham inpatient (times 12 outpatient period (at least part of  up (mg/day)
stimulation, x min/week) stimulation (times x min/ the time) (mg/day)

(months + weeks week)

days)

1 Cervical 2+ 18 Cc3 D Right S Knee prosthesis, left PT 4-5 x 45, OT 5 PT1 x 60,0T 1 Baclofen OD 5-10, Baclofen OD
spinal shoulder operated years 4-5 x 60, pool 3 x 60 or none mirtazapine OD 5-20, mirtazapine
stenosis and before injury x 60, gym 1-2 x 3.7-7.5 OD 3.7-7.5
fall 30

2 Fall 2410 C1 D Right S Mitral valve prolapse PT 3-4 x 45, OT 5 PT1 x 450r Tizanidine 6, Tizanidine OD 6

4-5x 60, gym 2 none gabapentin 900,
x 60 oxycodone OD 5-10,
baclofen 5
3 Vehicle 2410 C1 D Right A Type II diabetes PT 4 x 60, OT 6 PT 1 x 60 or Pregabalin 300-375, Baclofen 35,
accident 4-5 x 60, pool 1 none, OT 1 x 60 mirtazapine 7.5, pregabalin 375,
x 60, gym 2 X oxycodone OD 5, melatonin 5
45 baclofen 25, melatonin
5
4 Fall 4411 Cc2 C Right A Lymphoma years before PT 4-5 x 60, OT 12 PT 2 x 60, OT 1 Escitalopram 10, Escitalopram 10,
injury (in remission), 4-5x 60 x 60 gabapentin 1200- temazepam OD
history of depression 1800, temazepam OD 10-20
before injury, type II 10-20
diabetes, hypertension
5 Fall 1+15 C4 D Right S Migraine PT4 x 60,0T4 6 PT 2 x 60 or Pregabalin 250-300, None
X 60 none, OT 1 x 60 oxycodone/naloxone
or none 15/7.5, tizanidine OD
2-4, oxycodone OD
10, lorazepam OD 1-2
6 Trampoline 1+8 Cc3 D Left A Hypertension, asthma, PT 4-5x45-60, 2 PT 0.5-1x60, OT Pregabalin 300, Baclofen 60,
accident splenectomy years before ~ OT 4-5 x 60, 0.4-1 x 45-60 baclofen 45, pregabalin 100,
injury gym 2-3x45 oxycodone/naloxone clonazepam OD
10, lorazepam 1, 0.5
oxycodone OD 5-20,
amitriptyline 10,
zopiclone OD 7.5

7 Diving 2+ 14 C6 B Right S Asthma PT 5 x 60, OT 4 8 PT 1.5-2 x 60, Pregabalin 225, Quetiapine OD

accident X 60, gym 2-3 X OT 1 x 90 or quetiapine OD 25 12,5
45 none
9 Sledding 1+ 20 C4 D Left A None PT 4-5x 60, OT 0 PT 0.5 x 60 or None None
accident 4-5x 60 none, OT 0.5 x
60 or none
10 Fall 2+ 16 C5 D Right S Hypercholesterolemia PT 4-5 x 60, OT 7 PT 0.5 x 45, OT Baclofen 15-45, Baclofen 45,
4-5 x 60, gym 0.5 x 45 gabapentin 900 gabapentin 900
2-3x45

11 Fall 1+29 C5 D Left A Intermittent atrial PT 3-5 x 30-60, 9 PT 0.5-1x45-60, Baclofen 30-35, Baclofen 5-15,

fibrillation, coronary OT 3-5 x 30-90, OT 0.5 x 60 pregabalin 375, pregabalin 150,

artery disease, asthma, pool 1 x 45, gym zopiclone OD 7.5, paracetamol/

history of smoking 2-3x45 paracetamol/codeine codeine OD 500/
OD 500/30 30

12 Violence 1+24 Cc4 D Right S None PT 5 x 45-60, 9 PT 1-2 x 60 or Baclofen 10-50, Baclofen 75,

OT 4 x 60, gym none, OT 1 x 60  gabapentin 2100- gabapentin 3600,
2-3x45 or none 3600, nortriptyline oxycodone 40 mg

25-100, oxycodone-
naloxone 15-20,

x 1, oxycodone
OD 5-30

(continued on next page)

D 32 DSNYS Y

XXX (XXXX) XXX $o1n2dD.1o130.MoN



Table (continued)

Patient Etiology of Time since Neurological AIS before Right Comorbidities Conventional Inpatient Conventional CNS-active drugs CNS-active drugs
number  injury injury at level before stimulation or left- rehabilitation, weeks out of rehabilitation, during stimulation at end of follow-
beginning of stimulation handed inpatient (times 12 outpatient period (at least part of  up (mg/day)
stimulation, x min/week) stimulation (times x min/ the time) (mg/day)
(months + weeks week)
days)
ketamine OD 50-100,
oxycodone OD 5-40,
temazepam OD 20,
buprenorphine 20 pg/
h, venlafaxine 225
13 Cervical 2421 C5 B Right Type II diabetes, PT 5 x 60, OT 12 PT1 x 60 or Baclofen 30-75, Baclofen 75,
fracture, hypertension, atrial 3-5x60-120, none, OT 0.6 x mirtazapine 7.5, buprenorphine 15
reason fibrillation gym 2 x 45 60, pool 0.5 x pregabalin 300-600, ug/h, gabapentin
unknown 60 oxycodone OD 5-20, 1800, clonazepam
zopiclone OD 7.5, 1.5, tizanidine 4
clonazepam 1-1.5,
buprenorphine 10 pg/
h
14 Fall 1+16 C3 D Right Hip arthroplasty years PT 4-5 x 45-60, 2 PT 0.5 x 60 or Baclofen 10, None
before injury, diffuse OT 3-5x 60, none, OT 0.4 x pregabalin 75,
idiopathic skeletal gym 2 x 45 60 temazepam OD 10
hyperostosis,
hypertension,
hypercholesterolemia
15 Cervical 1+18 C1 D Right Hypertension PT 4-5 x 45-60, 10 PT 1 x 60, OT Gabapentin 1200, Gabapentin 1200,
spinal OT 4-5 x 60, 0.7 x 60-90 baclofen 15 baclofen 15
stenosis gym 2-3 x 60
16 Spinal 247 C3 D Right None PT 5 x 45-60, 4 PT 1 x 45, 0T Gabapentin 600-900, Tizanidine OD 2-6
infarction OT 3-5x 60, 0.7 x 45, pool tizanidine OD 2-6
pool 1-2 x 45 0.5 x 45
17 Fall 241 C6 D Right None PT 3-5 x 30-60, 10 PT 1 x 45, OT Gabapentin 600-1200, Gabapentin 1500,
OT 3-5 x 60, 0.5 x 45-60, baclofen 60 baclofen 60,
gym 2-3 x 45-60 pool 0.5 x 45 tizanidine 8,
buprenorphine 5
ng/h
18 Fall 3+13 C5 D Right Hypertension PT 3-5 x 30-60, 7 PT 1.5 x 45, OT Baclofen 25, Baclofen 25,
OT 3-5 x 60, 1 x 60, pool 0.5  pregabalin 300-400, melatonin 3

gym 2-3 x 45-60

x 45

melatonin 3

CNS, central nervous system; PT, physiotherapy; OT, occupational therapy; OD, on demand.
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The effects of the stimulation were not limited to the muscles
innervated by the stimulated nerves, although the effect in muscles
belonging to these nerves was more profound, highlighting the speci-
ficity of the stimulation. In high-PAS, the PNS train is applied with an
intensity that is sufficient to activate lower motoneuron cell bodies at
the spinal-cord level, as ensured by F-response measurements [37].
Therefore, a PNS-induced pulse train applied to a peripheral branch is
thought to induce activation of the larger pool of the lower motoneurons
and intervening interneurons and together with TMS promote plastic
changes at the spinal-cord level between upper and lower motoneurons
and their interneurons [30]. In our previous studies where measure-
ments for high-PAS were made utilizing MEP and F-responses obtained
from electrodes placed on the abductor hallucis and stimulation tar-
geting the tibial nerve, changes in H-reflex pathway measured from the
soleus confirmed the hypothesis that changes occur at the spinal level
affecting the targeted myotome [33]. Activation of the surrounding re-
gions of the motor cortex by high-intensity TMS is also very plausible
[301.

This study had limitations. As expected for the subacute period,
fluctuations in the patients’ overall medical condition, drug dosages,
and other factors were evident within both groups, and performance
expectedly increased in both groups. Baseline values were affected by
the exact time of the treatment start, injury severity, and other patient-
specific factors. Moreover, the overall number of participants was rela-
tively small. Despite this, we detected a significant effect of high-PAS.
Although patients with psychiatric comorbidities, progressive condi-
tions, or age <18 or >75 years were excluded, in clinical practice high-
PAS could also be effective for such patients. Further studies are also
needed to characterize the role of factors such as extent of lower motor
neuron damage that affect responsiveness to high-PAS [40,60,61].

No seizures were observed in this study. 1-Hz stimulation is consid-
ered low frequency [18]; here we used 0.2 Hz with single pulses. For low
frequencies, seizure induction is considered rare, or this type of stimu-
lation can be considered even protective [18]. Frequencies <1 Hz have
been used without incident and no recommendations exist on maximal
intensities for such frequencies in safety guidelines [62]; this has not been
changed in later updates [18,63]. PAS protocols in general have not been
associated with seizures [63]. Here, brain pathologies have been
excluded prior to participation by brain MRI evaluated by a neuroradi-
ologist. If including patients with brain pathologies in clinical work,
safety guidelines should be consulted concerning allowed stimulation
settings and management of possible related adverse events [18,62,63].

In conclusion, this study is the first sham-controlled clinical trial to
demonstrate that high-PAS is a safe, feasible, and potentially effective
addition to rehabilitation after incomplete SCI even at a very early stage
after injury. The subacute phase was selected for high-PAS intervention
because neuroplasticity is believed to peak early after SCI, offering a
critical window for recovery. At this stage, weaker descending pathways
still retain better partial function, and muscles have not yet undergone
irreversible degeneration. Our findings suggest that applying stimula-
tion during this period can effectively engage residual neural circuits
and promote motor improvement. The use of high-PAS for other patient
groups also warrants further investigation. High-PAS could also be an
attractive option as an additional therapy combined with experimental
stem cells and pharmacological treatments that must be administered at
very early stages after SCI [2,7].
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